- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Efraim, Avichay (2)
-
Rosenfeld, Daniel (2)
-
Thornton, Joel A. (2)
-
Gong, Wei (1)
-
Holzworth, Robert (1)
-
Holzworth, Robert H. (1)
-
Lu, Xin (1)
-
Mao, Feiyue (1)
-
Pan, Zengxin (1)
-
Yin, Jianhua (1)
-
Zang, Lin (1)
-
Zhu, Yannian (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A Possible Cause for Preference of Super Bolt Lightning Over the Mediterranean Sea and the AltiplanoAbstract Exceptionally high‐energy lightning strokes >106 J (X1000 stronger than average) in the very low‐frequency band between 5 and 18 kHz, also known as superbolts (SB), occur mostly during winter over the North‐East Atlantic, the Mediterranean Sea, and over the Altiplano in South America. Here we compare the World‐Wide Lightning Location Network database with meteorological and aerosol data to examine the causes of lightning stroke high energies. Our results show that the energy per stroke increases sharply as the distance between the cloud'scharging zone(where the cloud electrification occurs) and the surface decreases. Since thecharging zoneoccurs above the 0°C isotherm, this distance is shorter when the 0°C isotherm is closer to the surface. This occurs either due to cold air mass over the ocean during winter or high surface altitude in the Altiplano during summer thunderstorms. Stroke energy decreases with the warm phase of the cloud, as proxied by the cloud base temperature, and increases with a more developed cloud, as proxied by the cloud top temperature, but to a much lesser extent than the distance between the surface and 0°C isotherm. Aerosols play no significant role. It is hypothesized that a shorter distance between thecharging zoneand the ground represents less electrical resistance that allows stronger discharge currents.more » « less
-
Pan, Zengxin; Mao, Feiyue; Rosenfeld, Daniel; Zhu, Yannian; Zang, Lin; Lu, Xin; Thornton, Joel A.; Holzworth, Robert H.; Yin, Jianhua; Efraim, Avichay; et al (, Nature Communications)Abstract The known effects of thermodynamics and aerosols can well explain the thunderstorm activity over land, but fail over oceans. Here, tracking the full lifecycle of tropical deep convective cloud clusters shows that adding fine aerosols significantly increases the lightning density for a given rainfall amount over both ocean and land. In contrast, adding coarse sea salt (dry radius > 1 μm), known as sea spray, weakens the cloud vigor and lightning by producing fewer but larger cloud drops, which accelerate warm rain at the expense of mixed-phase precipitation. Adding coarse sea spray can reduce the lightning by 90% regardless of fine aerosol loading. These findings reconcile long outstanding questions about the differences between continental and marine thunderstorms, and help to understand lightning and underlying aerosol-cloud-precipitation interaction mechanisms and their climatic effects.more » « less
An official website of the United States government
